

MOTOR DRIVEN DESK CLOCK
SP9 Assembly Notes

Instructions for building a large 3D printed desk clock
with an ultra-quiet stepper motor drive circuit

Steve Peterson
15-Apr-2023

2

Contents

Tables.. 2

Figures .. 2

Revision History ... 3

Description .. 4

Components .. 5

Wiring ... 8

Motor Test .. 12

Motor Debug ... 13

Speed Selection ... 15

Debug Monitor .. 15

Algorithm .. 16
Cut Metal Parts .. 18
Tools Required:.. 19

Printing the Parts... 19
Notes about Arachne ... 22
Layer Changes ... 23

Building the Clock .. 26
Component Pre-Assembly ... 26
Checking Component Fit .. 30
Adding the Gears ... 31
Motor Tuning .. 35
Final Assembly ... 37
Debug .. 39

Final Notes .. 39

Appendix: Some of my Other Clock Designs ... 40

Tables
Table 1: Non-printed components ... 5

Table 2: Speed selection jumpers .. 15

Table 3: Component names and print times .. 20

Figures
Figure 1: CNC Shield V4 ... 6

Figure 2: Arduino Nano.. 7

Figure 3: TMC2208 .. 7

3

Figure 4: DS3231 RTC... 7

Figure 5: Stepper motors ... 8

Figure 6: CNC Shield V4 Wiring Modifications .. 9

Figure 7: Top Side Close-up of Components ... 10

Figure 8: Assembled Driver Ready to Test .. 11

Figure 9: Standard Stepper Motor Cable .. 14

Figure 10: Modified Stepper Motor Wiring .. 14

Figure 11: Algorithm flowchart .. 17

Figure 12: Cut metal parts list .. 18

Figure 13: Gear slicer detail with five perimeters ... 21

Figure 14: Gear center hub .. 21

Figure 15: Arachne side effects for gears ... 22

Figure 16: Front frame layer changes ... 23

Figure 17: Optional back frame layer changes .. 24

Figure 18: Gear reference diagram .. 25

Figure 19: Gear 2 shaft assembly ... 26

Figure 20: Gear 5 shaft assembly ... 27

Figure 21: Segmented front frame assembly .. 28

Figure 22: Segmented back frame assembly .. 29

Figure 23: Arbor detail and back frame standoffs... 30

Figure 24: Start with the gear 2 assembly .. 31

Figure 25: Add gear 3... 31

Figure 26: Add gear 4... 32

Figure 27: Add gear 5 assembly ... 32

Figure 28: Knob added to gear 5 behind the clock.. 33

Figure 29: Add gear 6... 33

Figure 30: Add gear 7... 34

Figure 31: Add gear 8... 34

Figure 32: Add the front frame .. 35

Figure 33 Motor and motor mount .. 36

Figure 34: Add the base ... 36

Figure 35: Motor and electronics added to base .. 38

Figure 36: Grasshopper clock and wood clock rendering .. 40

Figure 37: Wooden gear experiments .. 41

Figure 38: Desk clocks.. 41

Figure 39: Original Thingiverse design.. 42

Figure 40: Large pendulum clock ... 43

Figure 41: Easy build clock with 32 day runtime ... 44

Revision History
10-Feb-23 Original version.

15-Apr-23 Corrected gear names in print time table on page 20.

file:///D:/Users/Steve/Documents/TurboCAD%202018%20x64/Desk_clock2_xxl_SP9/assembly_notes_SP9_2023_Apr.docx%23_Toc132443224

4

Description
This assembly guide describes a 3D printed desk clock with large exaggerated gears extending well

beyond the dial. The new drive circuit provides silent power using a precision reference to maintain an

accuracy of about a minute per year. This clock looks great sitting on any desk.

I started the design of this clock over three years ago, but it never felt complete until I discovered the

new silent stepper motor driver. The original motor control circuit produced a slight rumbling noise. The

recent discovery of an ultra-quiet drive circuit made this clock feasible to finish. The small version of the

clock was enhanced to include the quiet drive circuit, but I prefer this larger more impressive design.

This has become my new favorite clock since it is quiet enough to sit in any room and maintains

incredible accuracy. The motorized drive circuit never needs winding.

The following criteria were used while designing this clock:

1) The clock should look good.

2) It must be accurate.

3) It must be quiet.

4) Avoid using custom circuits or components.

5) The design should not be dangerous. No high voltages. The motor should have a low enough

torque that it stalls if anything is stuck in the gears. etc.

Large exposed gears help satisfy the first criteria to look good. The solid dial makes it easy to read the

time. The first prototype used a large dial, but I think it looks much better with a smaller dial to shift the

focus back to the large gear train. The new control circuit satisfies all the remaining criteria. A precision

real time clock reference holds incredible accuracy. The TMC2208 stepper motor driver provides smooth

silent motion. All components used in the clock are readily available at a reasonable cost.

The overall size is around 12.4” by 11.8” and 5” deep (315mm x 300mm x 125mm). The design prints

best on a Prusa MK3S (250x210mm) or Ender3 (220x220mm) sized printer. The largest components

have been partitioned so they can be printed on a Prusa Mini or similar machine with at least a

180x180mm print area.

5

Components
Here are the non-printed parts required to build the clock. Prices are listed for the electrical components

ordered on Amazon around Dec 2022.

Component Cost (USD) Notes
CNC Shield V4 $10.96 for 3 Main circuit board that all components plug into.

Arduino Nano $16.99 for 3 Processor that controls everything. The design supports both
mini-USB and USB-C connectors. Either style will work.

TMC2208 $21.99 for 6 Ultra-quiet Trinamic stepper motor driver.

DS3231 real time
clock

$12.99 for 4 Precision real time clock to provide a 1Hz heartbeat to the
Arduino Nano. See the pictures a few pages ahead.

NEMA17 stepper
motor

$10.99 each This design supports almost any NEMA17 bipolar stepper
motor. 2-3 ohm motors rated for 1-2A with body lengths of
33-39mm are preferable. The cable should have a standard 4
pin header with 0.1” (2.54mm) spacing.

Mini USB cable or
USB-C cable

 For powering and programming the Arduino Nano. Select the
style that matches your Arduino Nano.

USB power source To power the clock. Current is around 100mA.

4X #6x3/4” flat head
wood screws
(metric M3x20mm
or M3.5x20mm)

 Frame is assembled using small flat head wood screws. The
segmented frame for smaller printers needs an additional 3
screws.

18” X 1/16” music
wire (metric 0.5m X
1.5mm)

 Arbors are made using hardened music wire rod cut into
short segments (described later). Add an additional 18”
(0.5m) if printing the segmented frame on a small printer.

1X small spring Use a spring from a ball point click pen for the friction clutch.

1X 1/16” or 1.5mm
shaft collar

 Optional component used as part of the friction clutch. A
printed component is included that can also be used.

6X M3x8mm screws Socket heads are best, but most small diameter head styles
are OK. M3x8mm length is preferred, but M3x6mm or
M3x10mm may also work.

4X 1” felt pads Optional pads for under the base of the clock.
Table 1: Non-printed components

Notes regarding a few items:

1) The CNC Shield V4 was designed to connect an Arduino Nano to 3 A4988 stepper motor drivers.

We only need a single stepper motor driver and will be using a TMC2208 instead of the A4988.

The CNC Shield V4 has a well-known bug that needs to be fixed. It is described in the next

section. A modified design (black and yellow) without this bug can be purchased from

KeyeStudio on AliExpress, but the fix is super easy so I recommend the cheaper red version.

2) The CNC Shield V4 is designed to use an Arduino Nano that is now available with either an old

style mini USB connector or a newer USB-C connector. The clock base can be printed to support

either connector style. USB-C cables are easier to find, so the Arduino Nano with USB-C

connectors are slightly preferrable.

3) The TMC2208 stepper motor driver is amazing. It supposedly supports up to 256 position micro-

stepping, but 16 positions is good enough to drive the clock and easier to configure. The

6

TMC2208 driver will be wired to bypass the internal regulator and run directly on 5V. This allows

the clock to run using a simple USB power cable. Vref will be set to the lowest possible motor

current.

4) The DS3231 real time clock used is often listed as “DS3231 for Raspberry Pi”. It has a 5 pin

female socket and yellow battery (or capacitor?). It has voltage and temperature compensation

to maintain an accuracy of about a minute per year. A slight wiring modification allows the 5 pin

device to plug into one of the unused 4 pin stepper motor headers.

5) Nearly any NEMA17 stepper motor can be used in this clock. The biggest limitation are the

physical size. They should have a single shaft and a body length of less than 40mm. Many

common 1.5A motors with 2-4 ohm winding resistance will work great. I tested StepperOnline

part number 17HS15-1504S (1.5A, 2.0 ohms) and a short body 17HE08-1004S (1.0A and 3.6

ohms). Many other stepper motor brands will also work. I have not found any NEMA17 stepper

motor that would not work. The only limitations are the physical size (body length under 40mm

and a single shaft). The base works best using motors with a body length of either 33mm or

39mm. The 34 ohm stepper motors used in the original design can be used, but the more

common 2-4 ohm stepper motors are preferred.

Here are some sample pictures of the electrical components on Amazon. Many are sold in quantities of

3 for a tiny bit more than the single prices. Many builders seem to make more than 1 clock, so go ahead

order the bundles and build a few clocks. The first word in the descriptions (AITRIP, OSOYOO, Dorhea,

etc.) seems to be random supplier names and not a great search keyword.

The CNC Shield V4 is often sometimes comes bundled with A4988 drivers. Order the bare versions since

we will be populating them with TMC2208s instead. Make sure to order CNC Shield V4 and not CNC

Shield V3.

Figure 1: CNC Shield V4

7

Order the Arduino Nano with pre-installed headers if you can find them for a good price. The ones listed

below are $5.66 each for bare boards or $6.80 for pre-installed headers.

Figure 2: Arduino Nano

The TMC2208 is usually sold in bundles of 4 to 6 for use in 3D printers.

Figure 3: TMC2208

This is the real time clock used as a time reference. Several other RTC styles will show up in the search.

We need to use the one shown below with a 5 pin socket.

Figure 4: DS3231 RTC

8

Any of the following style stepper motors should work. They are the same ones used in many 3D

printers. Make sure they have cables. The controller end needs to have a 4 pin socket to plug directly

into the CNC Shield V4. A connector at the motor is helpful, but not critical.

Figure 5: Stepper motors

Wiring
This section describes the wiring modifications to be made to the CNC Shield V4 and the DS3231 real

time clock. A small custom circuit board could be designed to work without these edits, but the cost

would be higher than the easily acquired standard parts.

The most common (and cheapest) red colored CNC Shield V4 boards have a bug that needs to be fixed

to enable micro-stepping. KeyeStudio sells a black colored board without the bug, but it is harder to find,

so I will describe how to modify the red board.

Make the following edits using the pictures on the next few pages as a reference.

1) Remove the 3 jumper blocks under the lower right TMC2208 socket. This prevents shorting Vcc

and Gnd when step #2 is completed.

2) Solder a jumper wire on the back of the board from the 3 jumper pins to the nearest Vcc

connection. We always want 16X micro-stepping, so the three jumpers will be hard wired to Vcc.

We only need to fix the driver module that will be populated with a TMC2208.

3) Connect the TMC2208 Vmot supply to Vcc to run the stepper motors using 5V from the USB

cable. The easiest fix is to extend the wire from the step #2 to the capacitor on the left. This edit

allows the clock to run on a standard 5V USB power source.

4) Connect the SDA/SCL serial port wires to an unused stepper motor header. We will be using the

motor header that is straight down from the serial port header. The SDA and SCL connections

are about 1” long.

9

5) Connect the real time clock Vcc and Gnd pins to the nearest supply pins. Edit #3 shorts Vcc and

Vmot, so the closest Vcc connection is the former Vmot pin on the left.

6) Short the 5th position Gnd pin of the DS3231 RTC to the unused 4th position NC pin. This allows

the 5 pin RTC to plug into the 4 pin motor header. This edit is done on the top side to the

DS3231 real time clock module. It is shown a few pages ahead.

This is the back side of the CNC Shield V4 board showing edits #2 through #5.

Figure 6: CNC Shield V4 Wiring Modifications

10

The top side of the board only needs edits #1 and #6.

Insert components into the CNC Shield V4 to match the picture below. The Arduino Nano will need the

header pins soldered on if it didn’t come pre-assembled. The USB port points to the right.

Add the heat sink to the TMC2208 to minimize any heat buildup. Turn the current adjust potentiometer

all the way to the left so the motor currents are as low as possible.

Insert the DS3231 real time clock into the lower left stepper motor header. It is inserted to only use the

pins labeled NC, C, D, and “+”. Edit #6 connects the Gnd pin to the NC position. This allows the 5 pin RTC

to plug into the 4 pin header.

Save the jumpers that were removed from below the TMC2208. They can be used as motor direction

and speed selection jumpers.

Here is a picture of the top side of the board.

Figure 7: Top Side Close-up of Components

Short these

two pins

(Edit #6)

Insert at this position (shifted left)

TMC2208

with heat sink

Arduino Nano

Current

adjust

DS3231

Remove jumpers

(Edit #1)

11

This is the complete board with a stepper motor attached and ready to test. The TMC2208 heat sink

might be optional when adjusted for really low currents. The base has room for it, so add it to the

TMC2208, leaving the current adjustment potentiometer accessible.

Figure 8: Assembled Driver Ready to Test

DS3231

short these

two pins

(Edit #1)

direction and speed jumpers

remove

jumpers

under

TMC2208

(Edit #6)

12

Motor Test
It is a good idea to test the circuit before assembling everything into the completed clock. This allows

you to adjust the TMC2208 current levels to be as low as possible and still allow the clock to operate.

Perform all the wiring modifications previously described and plug everything together as shown in the

diagram on the previous page.

Here are the steps to program the Arduino Nano:

1) Perform the previously listed wiring modifications to the CNC Shield V4 and DS3231.

2) Assemble the CNC Shield V4.

 2a) Solder the header pins onto the Arduino Nano if it doesn’t already have them.

 2b) Insert the Arduino Nano into the CNC Shield V4 in the orientation shown.

 2c) Insert the TMC2208 into the lower left socket. Pay attention to the orientation.

 2d) Add the small heat sink to the top of the TMC2208.

 2e) Turn the Vref potentiometer all the way to the left for the lowest possible current.

 2f) Add the stepper motor cable to the header by the TMC2208.

 2g) Add the DS3231 RTC in the position shown in the pictures.

3) Download the Arduino IDE at https://www.arduino.cc/en/software selecting the option for

Windows, Linux, or Mac.

4) Plug the Arduino Nano to your computer using a mini USB or USB-C cable.

5) Open the IDE and configure for Arduino Nano.

 5a) Tools → Board → Arduino Nano

 5b) Tools → Processor → ATmega328P (Old Bootloader)

Note: your board might use the old or the new bootloader. Select the one that works.

 5c) Tools → Port → “Varies, usually COM3 or COM4 on my PC, and never COM1”

 5d) Tools → Programmer → USBasp

6) Download the CNC Shield V4 Arduino sketch from https://www.stevesclocks.com/sp9 and load

it into the IDE. The file extension might need to be renamed from *.txt to *.ino. Alternatively,

open the file in a text editor to cut and paste the code into the IDE.

7) Install the real time clock library.

 7a) Sketch → Include Library → Manage Libraries…

 7b) Search for RTC and install the RTC library by Manjunath CV.

 7c) Close the library manager popup window.

8) Verify (compile) the code by clicking the “check mark” icon in the upper left corner of the IDE.

https://www.arduino.cc/en/software
https://www.stevesclocks.com/sp9

13

9) Upload the code by clicking the “➔” icon in the upper left corner of the IDE. The Arduino LEDs

should blink for a second or two as the algorithm is uploaded.

10) Open the Serial Monitor debug port by clicking the “magnifying glass” icon in the upper right

corner of the IDE. Alternatively, open the window using “Tools → Serial Monitor”. A debug

window should pop up showing the parameter settings and tracking indicators that updates

once per second.

If everything works as expected, the stepper motor should start rotating at a few revolutions per

minute. The exact speed is determined by the speed jumpers.

Follow the debug steps in the next section if it does not rotate.

Motor Debug
There are a few things to check if the motor does not spin or if it spins erratically.

Adjust the TMC2208 potentiometer slightly higher if the motor seems to move but has almost no power.

I find that many motors will operate at the lowest possible setting or close to the lowest setting. We

want to keep the motor current low to minimize heat and avoid overloading the USB power supply. The

clock needs very little power, so use the lowest stable setting. The motor should spin but be easy to stop

by holding the shaft.

If the shaft oscillates back and forth without rotating, then it might need a cable modification. The

TMC2208 header expects a motor wired as 1B, 1A, 2A, and 2B. Pins 1A and 1B connect to one motor

coil. Pins 2A and 2B connect to the other coil. Some stepper motors plug straight in. Other stepper

motors are connected as 1B, 2A, 1A, and 2B. These motors need to swap the middle two wires on the 4

pin connector. See the photos on the next page.

Gently lift the tab holding the wires in place and remove the center two wires. Lift the tabs just enough

to pull out the wires and the attached connectors. Swap their positions and insert them back into the 4

pin connector.

14

Here is the original unmodified stepper motor cable

Figure 9: Standard Stepper Motor Cable

This is the modified cable with the middle two pins swapped.

Figure 10: Modified Stepper Motor Wiring

The modified cable seems to be needed for about 30% of the small sample of motors I tested. The

modification is easy to make, so don’t worry about which type of stepper motor to order.

Lift these tabs using

a pin to remove wires

Swap these wires

15

Speed Selection
The exact speed and direction of the motor is determined by four jumper pins in the 8-pin header near

the top of the CNC Shield V4. The left-most jumper determines the motor direction. Add or remove this

jumper so the motor spins clockwise when it is sitting on the test bench.

The remaining three jumpers select one of eight motor speeds. This clock has an 18 tooth pinion on the

motor driving an 84 tooth main gear. The motor rotates at 4.667RPM using jumper settings of 100 (“in”,

“out”, and “out”). Other clock designs with different gear ratios would need different jumper settings.

The final speed settings might change slightly as new clocks are designed. Here are the latest values that

should work for some of the clocks that are being designed:

Setting Jumpers RPM Examples Notes
0 000 2.4 24:10, 36:15

1 001 2.667 32:12 Small wood clock might use this setting

2 010 3 30:10, 45:15

3 011 3.6 36:10, 54:15 SP6 desk clock uses this setting

4 100 4.667 56:12, 84:18 SP9 large printed clock uses this setting

5 101 5.4 54:10 Large wood clock might use this setting

6 110 10

7 111 60 Fast mode for debug
Table 2: Speed selection jumpers

Using speed selection jumpers allows the CNC Shield V4 to be moved between different clocks without

having to re-program the Arduino Nano.

Debug Monitor
The Serial Monitor debug window is very useful to see when the algorithm is working properly and the

stepper motor is tracking the real time clock. Click the icon that looks like a magnifying glass in the upper

right corner if the IDE window. A window will open with debug statements sent by the Arduino using

Serial.print commands.

The debug monitor will show the program name and sketch revision. The next few lines show the motor

delay parameters. Everything after this is a monitor of the algorithm in action. Each “+” indicates that

the algorithm needs to speed up slightly and each “-“ indicates that it is on track or needs to slow down

slightly. Any duty cycle between 10% and 90% indicates proper tracking. The number in parenthesis at

the end of each line is the total number of minutes elapsed since the algorithm started running. It will

also show hours and days after the clock runs long enough. The status LED on the Arduino Nano will also

blink every time a “+” is displayed.

16

The serial monitor might look like this:

CNC Shield V4 clock movement - Rev 1.02

speed 4

steps 248 (plus 8/9)

min_delay 1915

max_delay 2036

-------------------------++-+-+-+-++-+-+-+-++-+-+-+-++-+-+-+ (1m)

-++-+-+-++-+-+-+-++-+-+-+-++-+-+-+-++-+-+-+-++-+-+-+-++-+-+- (2m)

+-++-+-+-+-++-+-+-++-+-+-+-++-+-+-+-++-+-+-+-++-+-+-+-++-+-+ (3m)

-+-++-+-+-+-++-+-+-+-++-+-+-++-+-+-+-++-+-+-+-++-+-+-+-++-+- (4m)

The header shows the motor configured as speed setting of 4. The motor uses 248 full steps per second

plus 8 extra steps every 9 seconds. This corresponds to 248.888 steps per second and an overall motor

speed of 4.667RPM. The motor will toggle between delay values of 1.915ms and 2.036ms to meet the

target speed.

Algorithm
The clock algorithm is fairly simple. It uses two delay values. The minimum delay is slightly fast and the

maximum delay is slightly slow. The algorithm switches between fast and slow delays as needed to track

the real time clock. The speed difference is not noticeable and the second hand only deviates from the

target position by a fraction of a second.

The algorithm operates similar to following a car that is travelling at exactly 60MPH when your car can

travel either 59MPH or 61MPH. Start at a fixed distance behind the pace car. Travel at 59MPH until you

fall behind, then switch to 61MPH until you catch up. Your average speed will be 60MPH.

The actual algorithm allowing the motor to track the real time clock is only about 20 lines of code. The

rest of the code is overhead for setup, reading the speed jumpers, and debug monitor output.

The flowchart is shown below:

17

Figure 11: Algorithm flowchart

18

Cut Metal Parts
This clock has a relatively simple metal parts list. The design works equally well with 1/16” or 1.5mm

music wire since they are very close to the same size. Use a 1/16” or 1.5mm drill to enlarge any hole

sizes to fit if needed. Most parts should be a loose fit on the arbors.

Music wire comes in a hardened state which is great for the clock, but can be difficult to cut. A Dremel

cut-off disk or cutters with hardened jaws will work well. Cheap wire cutters might not be tough enough.

The number of cut metal parts is smallest is you can print the one-piece frame components. The split

back frame needs two additional alignment rods and the split front frame needs four additional rods.

The split frame performs identically, with the exception of a few slightly visible screw heads.

Figure 12: Cut metal parts list

19

Tools Required:
A few simple tools are required for building the clock.

1) Phillips screwdriver

2) Hex wrench for M3x10mm screws

3) Hacksaw or Dremel cut-off disks for cutting music wire

4) Soldering iron for assembling stepper motor driver

5) Fine tooth hand files or sandpaper may be needed to clean up some of the printed parts

6) 1.5mm or 1/16” drill bit for cleaning up printed holes

Printing the Parts
Print one of each clock part from the following table. Some parts are provided with multiple

configurations, so select the one that works best for you.

I print everything using PLA with a 0.4mm nozzle, 0.2mm layer heights, 3-5 perimeters, 6 bottom layers,

7 top layers, 20% cubic infill, combine infill every 2 layers, random seams, and 0.08mm elephants foot

compensation. The default orientation is usually optimal with the largest surface already facing down.

Supports are never needed. Most parts print great with the new Arachne slicing engine except the gears

that print better using the classic slicer.

A few parts have options depending on your printer size or other requirements. The base can be printed

with the power plug at the back or either side if you want to place the clock on a narrow shelf. The base

is optimized for either mini-USB or USB-C power plug. The holddown clips used to keep the CNC Shield

V4 positioned properly will also be different depending on the position of the power plug.

The frame is provided as large pieces or segmented into components that can be printed on smaller

printers. The one-piece back frame is 218x182mm or 175x155mm when printed as “split” components.

The one-piece front frame is 218x182mm or 174x170mm when split. The one-piece versions are

preferred if your printer is large enough. They will have fewer assembly steps and will have less visible

screws.

20

Part Name Color Print Time Filament Notes
base_back_mini tan

1

9h 34m 149.82g
Print one of any style
depending on where you want
the power plug (back, left, or
right) and the type of power
plug in your Arduino Nano
(mini USB or USB-C)

base_back_usbc tan 9h 34m 149.77g

base_left_mini tan 9h 37m 148.31g

base_left_usbc tan 9h 38m 148.29g

base_right_mini tan 9h 37m 148.31g

base_right_usbc tan 9h 38m 148.29g

frame_back tan, purple 1 6h 21m 75.71g
4 perimeters, add a color
change at 10.40mm

frame_back_split_lower tan, purple 0 4h 1m 44.75g Optional split frame, 4
perimeters, add a color
change at 10.40mm frame_back_split_upper tan, purple 0 2h 58m 36.23g

frame_dial_roman tan, ivory, black 1 7h 1m 132.14g
4 perimeters, add color
changes at 10.40mm and
12.20mm

frame_dial_roman_split tan, ivory, black 0 6h 16m 122.88g Optional split frame, 4
perimeters, add color changes
at 10.40mm and 12.20mm

frame_front_split_left tan 0 0h 43m 7.71g

frame_front_split_right tan 0 0h 43m 7.71g

gear1_18 purple 1 0h 59m 7.33g Classic slicer, 5 perimeters

gear2_84_20 purple 1 3h 43m 33.66g Classic slicer, 5 perimeters

gear3_80_32 purple 1 3h 40m 30.89g Classic slicer, 5 perimeters

gear4_80_40 purple 1 3h 49m 33.52g Classic slicer, 5 perimeters

gear5_25 purple 1 1h 7m 8.01g Classic slicer, 5 perimeters

gear5_80 purple 1 1h 39m 16.95g Classic slicer, 5 perimeters

gear5_collar purple 0 0h 7m 0.53g Optional printed shaft collar

gear5_knob purple 1 0h 17m 2.98g

gear6_75_20 purple 1 2h 57m 23.73g Classic slicer, 5 perimeters

gear7_80_25 purple 1 2h 32m 23.62g Classic slicer, 5 perimeters

gear8_75 purple 1 1h 50m 16.86g Classic slicer, 5 perimeters

hand_hour_gothic copper 1 0h 20m 2.31g

hand_minute_gothic copper 1 0h 17m 1.93g

hand_second copper 1 0h 24m 3.35g Print with 14 perimeters

holddown_back any

1

1h 38m 17.00g
Print one of these to match
base power plug direction

holddown_left any 1h 28m 15.17g

holddown_right any 1h 28m 15.18g

motor_mount_33mm tan
1

2h 54m 41.31g Print one of these to match
your motor body length motor_mount_39mm tan 2h 53m 41.15g

Total 18 52h 29m 636.13g

Table 3: Component names and print times

21

The frame and base can be printed using somewhat generic settings. I like to use at 4 perimeters for the

frame to provide extra strength. The gear teeth only need 3 perimeters, but the center hub in each gear

is designed to print best using 5 perimeters, so use 5 perimeters for the gears.

The only other part with special print requirements is the counter weighted second hand that needs

either 14 perimeters or 100% infill so the weighted end is completely solid to keep it balanced.

This is what the gear teeth should look like in the slicer.

Figure 13: Gear slicer detail with five perimeters

And the center hub that prints solid with 5 perimeters.

Figure 14: Gear center hub

22

Notes about Arachne
A recent slicer enhancement added the Arachne perimeter generation algorithm. This is the only

algorithm used in the newer Cura versions and default in PrusaSlicer. Most parts print better using

Arachne. However, there are a few parts that print better without Arachne. The gears in this clock are

designed and optimized for perfect printing without Arachne. The rounded internal perimeters added

by Arachne create extra gap fill areas that cancel out most of the benefit of the clean gear tooth profiles.

The additional gap fill increases print time and increases stringing resulting in rougher gear surfaces.

This is how the gears will print using the Arachne slicing engine. Turning off Arachne will result in the

profiles shown on the previous page.

Figure 15: Arachne side effects for gears

PrusaSlicer has the ability to select between Arachne or the classic perimeter generator. The gears will

be much cleaner with the classic perimeter generator and five perimeters. Unfortunately, the latest

version of Cura seems to have switched exclusively to using Arachne for perimeter generation.

PrusaSlicer is preferred for slicing the gears. If you use Cura, then a version before 5.0 will produce

better results for the gears. The non-gear parts can use any slicer.

Extra gap fill

23

Layer Changes
The front frame needs a color change at 12.20mm to add highlights for the numbers. A color change at

10.40mm to change the dial to a light color is optional depending on the base color.

Figure 16: Front frame layer changes

24

The back frame has integrated standoff columns to position the gears at the proper heights. The clock

looks best with a color change at 10.40mm to match the gear color.

Figure 17: Optional back frame layer changes

25

Here is a diagram showing the various gears used in the clock.

Figure 18: Gear reference diagram

26

Building the Clock
Start by printing all the parts as described earlier. A few components can be pre-assembled before being

placed into the clock.

Component Pre-Assembly
Gear 2 is the second hand gear driven once per minute by the motor pinion. The arbor needs to be tight

on the gear so the second hand will rotate when gear 2 rotates. It doesn’t need to be very tight, just

enough to hold the position. The shaft should extend 0.4’ (10mm) below the bottom of the gear. The

ideal screw size is M3x8mm, but M3x6mm or M3x10mm screws can also be used.

Figure 19: Gear 2 shaft assembly

27

The gear 5 assembly incorporates a friction clutch to hold when the clock is running and slip when

setting the time. Gear5_25 and the shaft collar are tight on the 3.5” arbor and gear5_80 is allowed to

rotate. The pen spring provides a slight amount of pressure to hold gear5_80 steady when the clock is

running.

Add the 1/16” (1.6mm) shaft collar to the arbor with 1” (25mm) extended out the bottom end. There is

an optional printed version of the shaft collar that can be used to avoid having to buy a single shaft

collar. The printed gear5_collar is a press fit it onto the shaft. If the printed shaft collar is too tight, drill it

by turning a drill bit by hand. Make a single pass most of the way through. The arbor can then be

pressed into the printed collar and it should hold tight enough. A small washer could be added to

prevent the pen spring from digging into the printed part.

Add a pen spring, gear5_80, and gear5_25 spring to the arbor. Position gear5_25 with 0.3” (8mm)

extended. Secure it with an M3x8mm screw. The total thickness of the stack should be around 2.2”

(58mm). Gear5_80 should be able to rotate independently from gear5_25.

Here is the completed assembly.

Figure 20: Gear 5 shaft assembly

28

The front dial is the largest component in the clock. Print frame_dial_roman as a single piece if your

printer has a 220x185mm or larger print area. Smaller printers with a 180x180mm print area can use the

split dial option and assemble the components using alignment rods and screws. The default orientation

should fit, or you may need to rotate parts slightly. You may also need to adjust the skirt distance or

eliminate the skirt for some parts.

The lower legs of the split dial option will be aligned using four 1/16” by 3” (1.5mm by 75mm) music

wire rods and attached using two #6x3/4” (M3x20mm or M3.5x20mm) wood screws. The alignment

rods are expected to be a tight fit that may need pre-drilling. The front of the legs have beveled edges as

shown in the diagram.

Figure 21: Segmented front frame assembly

29

The back frame is the same size as the front dial. The single piece component needs a 280x185mm print

area and the segmented print only needs a 180x160mm printer. The single piece print will be slightly

stronger and skips the extra assembly steps.

The segmented back frame uses two 1/16” by 3” (1.5mm by 75mm) alignment rods and a #6x3/4”

(M3x20mm or M3.5x20mm) wood screw. The alignment rods are expected to be a tight fit that may

need pre-drilling.

Figure 22: Segmented back frame assembly

30

Checking Component Fit
It is a good idea to check the fit of the remaining components before assembling the clock.

1) Check that arbors fit in their respective holes. The 1/16” or 1.5mm arbors need to fit into the

holes in the frame. The arbors should also pass through the gears. Drill them out if needed. It is

desirable for the holes to be just large enough for the arbor to pass through and spin freely.

Don’t enlarge the holes too much. The back frame has several standoffs that position gears at

the proper depths. The tall portion of each standoff is a loose fit and the arbor gets accurately

positioned at the bottom of each hole. Use a long drill bit if needed to provide clearance at the

bottom of each standoff. See the following picture for details.

Figure 23: Arbor detail and back frame standoffs

2) Check that the minute hand (gear6_75_20) fits into the hour hand (gear8_75) gear without

binding. Also check that the hour hand gear fits into the front frame. Gently enlarge the holes

using rolled up sandpaper or a round file if needed. Or wrap sandpaper around the outer shafts

to reduce the diameters slightly.

3) Check that the completed Arduino and motor controller fits into the base. Check that the USB

port passed into the base and into the Arduino Nano USB port.

4) Check that the frame fits into the base. The pegs are tapered so they should go in easily at the

start and get tighter when they bottom out. Sand the pegs slightly if needed. The bottom screws

should pull everything together. Use the screws to help push the frame out if you need to take

the clock apart.

31

Adding the Gears
The gears are added to the clock sequentially, starting with the gear 2 arbor assembly and working

numerically up to gear 8. Most arbors are 3” (75mm) long except the 4.3” (110mm) gear 2 arbor that

passes through the front of the clock and the 3.5” (90mm) gear 5 arbor that passes through the back.

Start by adding the previously completed gear 2 assembly into the center hole of the back frame.

Figure 24: Start with the gear 2 assembly

Add a 1/16” by 3” arbor and gear3_80_32 into the upper left frame position. It should mesh with gear 2.

Figure 25: Add gear 3

32

Add a 1/16” by 3” arbor and gear4_80_40 into the upper right position. It meshes with gear 3.

Figure 26: Add gear 4

Add the previously completed gear 5 assembly in the lower right position. The long end of the arbor

sticks through the back of the frame.

Figure 27: Add gear 5 assembly

33

Add gear5_knob to the arbor using a M3x8mm screw where the arbor sticks through the back of the

frame. Gear5_25 should rotate with the knob when holding gear5_80.

Figure 28: Knob added to gear 5 behind the clock

The gear 5 knob is now projecting behind the clock so it will not sit flat anymore. Set the back frame

onto an empty filament spool for the remaining assembly steps.

Add gear6_75_20 to the gear 2 arbor in the center of the clock. This gear drives minute hand and will

pass through the front frame. It meshes with gear 5.

Figure 29: Add gear 6

gear5_knob

m3x8mm

34

Add a 1/16” by 3” arbor and gear7_80_25 in the lower left position. It meshes with gear 6.

Figure 30: Add gear 7

The last remaining large gear is gear8_75 that goes on the gear 2 arbor in the center of the clock. It

meshes with gear 7 and passes through the front frame to hold the hour hand.

Figure 31: Add gear 8

35

Add the front frame onto the clock. Start by placing the dial over the central arbor. Align the remaining

arbors with their respective holes. This clock should be easy to assemble since the holes for the arbors

are easily visible around the dial and the holes are slightly chamfered. The frame will drop into place

when all the arbors are positioned properly. The hands can be added now or later.

Figure 32: Add the front frame

Motor Tuning
The final assembly step is to add the motor and base onto the clock. It is easier to adjust the controller if

you run the stepper motor cable through the USB port so the CNC Shield V4 sits outside the base. It can

be placed back into the base after debug has completed.

Print the 33mm or 39mm version of the motor mount that matches closest to your motor size. Enlarge

the bottom opening using a chisel or Dremel tool if needed so the wires will be able to pass through

later.

Attach the motor to the motor mount using two M3x8mm screws. Another M3x8mm screw holds

gear1_12 onto the motor shaft. The top of gear 1 should be positioned 0.78” (20mm) above the top of

the motor. It is OK for the stepper motor shaft to extend through gear 1.

36

Figure 33 Motor and motor mount

Print the style of base that matches your Arduino Nano port (mini-USB or USB-C) and the desired power

plug location (back, left, or right). Add the top portion of the clock into the base. The screws to hold the

base are optional at this point since you will need to take it apart to add the CNC Shield V4 into the base

in a later step.

Figure 34: Add the base

37

Stand the clock upright and connect the previously edited and programmed CNC Shield V4 to the

stepper motor. Plug in the USB cable and the clock should start moving.

The jumper labeled “CoolEN” can be added or removed to change the motor direction. The next three

jumpers should be set to 100 (“in”, “out”, and “out”) for the gear ratios used in this clock.

The next step is to adjust the stepper motor current to be as low as possible for the clock to operate.

The clock only requires a tiny amount of energy. Start with the TMC2208 Vref potentiometer rotated all

the way to the left. If the clock runs, leave it at the low setting. Or your clock may need a tiny bit of

additional current. Turn the potentiometer a fraction of a turn until the clock operates properly.

It should only require a small amount of force to stall the second hand gear. The stepper motor will

jump between positions with minimal pressure on the second hand gear. This can be useful to set the

second hand to an exact position, since this clock has an accuracy of about a second per week. The

lowest possibly motor power makes this easier.

Final Assembly
After the driver is tested, the clock is ready for final assembly. It is a good idea to unplug the USB cable

before disconnecting the stepper motor cable. Remove the base from the clock and move all the

components into the base.

Insert the CNC Shield V4 module into the base so the USB plug aligns with the cable opening. Check that

the USB cable can fit through the hole and into the Arduino Nano. Add the appropriate holddown (left,

right, or back) to keep the CNC Shield V4 held in place. Coil up the stepper motor cable so the motor

mount can be added without pinching anything. Pay attention to the direction that the stepper motor

cable plugs into the TMC2208 header, since it is not keyed. Reversing the cable may reverse the motor

direction and the direction jumper is not easily accessible after the clock is assembled.

38

Here is what the base and motor assembly would look like with the power on the left side. The first

debug test can have the stepper motor cable passing through the USB power hole to access the CNC

Shield V4 outside the base. The final assembly will have the CNC Shield V4 inside the base and secured

using the holddown. Felt pads up to 1” or 25mm diameter can be added to the bottom of the base if

desired.

Figure 35: Motor and electronics added to base

base_left_usbc

holddown_left

Motor mount,

motor, and gear 1

Optional felt pads

CNC Shield V4,

Arduino Nano,

TMC2208, and RTC

39

Debug
There are a few things to observe after the clock is re-assembled with the electronics in the base.

1) Is the motor rotating before it is placed into the clock? This should be the very first test. Observe

the debug monitor window when you are programming the Arduino Nano.

2) Does the motor rotate by itself, but not when assembled into the complete clock? This may be

caused by binding within the gear train. The clock only requires a tiny amount of power. If the

second hand moves, all other gears should also move. Everything should spin freely. Check for

friction where gear 6 passes through gear 8 and where gear 8 passed through the front dial. Also

check for too little pressure on the friction clutch. Stretch the spring slightly if needed. You can

also increase the motor current by rotating the Vref potentiometer.

3) The debug monitor can be checked for a mixture of “+” and “-“ if the clock is tracking against the

RTC. You can also watch the status LED. It should be blinking every few seconds. It will be on

when a “+” is displayed on the monitor. The status LED is easiest to see when the electronics are

outside the clock.

4) A missing or dead RTC will stall the algorithm. The debug monitor will show the first header line

and stop the first time it tries to read the RTC.

5) Does the clock keep accurate time? The clock should track within a small fraction of a second

compared to the real time clock if it is operating properly.

Final Notes
I hope you enjoy building this clock as much as I enjoyed designing it. Many features make it an

extremely functional clock. The new drive electronics make the clock completely silent with incredible

accuracy. The solid dial makes it easy to read the time, but I still wanted to see the gears so they were

extended well beyond the frame. This has become my new favorite clock.

Feel free to message me with questions during the build or just to say hi. You can reach me at

MyMiniFactory, YouTube, or the forum on my web site at https://www.stevesclocks.com/forum

My Patreon page is https://www.patreon.com/user/about?u=30981480 if you want to support me.

Happy clock building,

Steve

https://www.stevesclocks.com/forum
https://www.patreon.com/user/about?u=30981480

40

Appendix: Some of my Other Clock Designs
Here are a few of the other clocks I have built. Many of them will eventually be released for others to

build. The first is a grasshopper escapement to replace the deadbeat escapement in my one of my

earlier clocks. It needs a bit of fine tuning before it can be released. The second image is a rendering of

one of my designs as it may look after porting to use wooden gears.

Figure 36: Grasshopper clock and wood clock rendering

41

These are some sample wooden gears cut from solid wood using a new method to prevent expansion

from humidity changes. They will eventually be used to create the rendered clock on the previous page.

Figure 37: Wooden gear experiments

Here are some of the prototypes before settling on the final design in this release. The clock on the left

was a proof of concept. The middle clock was released in 2021 ago as SP6. This design is similar to the

one on the right. A future wooden gear version may be slightly larger.

Figure 38: Desk clocks

42

Here is the clock that started it all. It is posted to https://www.thingiverse.com/thing:3524448

Figure 39: Original Thingiverse design

https://www.thingiverse.com/thing:3524448

43

This is my second clock posted to https://www.myminifactory.com/object/3d-print-137009

Figure 40: Large pendulum clock

https://www.myminifactory.com/object/3d-print-137009/

44

A clock posted to https://www.myminifactory.com/object/3d-print-32-day-clock-easy-build-156759

with a runtime up to 32 days between winding. It is one of my easiest to build. Some of the features

making it easy to build also make it more efficient so the runtime can be increased to 32 days.

 Figure 41: Easy build clock with 32 day runtime

https://www.myminifactory.com/object/3d-print-32-day-clock-easy-build-156759

